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1 Introduction to Hypothesis Testing

1.1 Null and alternative hypotheses

Suppose we have a model F = {Pθ : θ ∈ Θ} with data X ∼ Pθ, and we want to distinguish
between two submodels, the null hypothesis H0 : θ ∈ Θ0 ⊆ Θ, and the alternative
hypothesis H1 : θ ∈ Θ1. If unspecified, Θ1 = Θ \Θ0.

There is an asymmetry here, where H0 is considered the “default assumption.” We
either

1. reject H0 (conclude θ /∈ Θ0)

2. fail to reject1 H0 (no definite conclusion).

Example 1.1. If X ∼ N(θ, 1), here are common hypothesis tests:

• H0 : θ = 0 vs H1 : θ > 0.

• H0 : θ = 0 vs H1 : θ 6= 0.

• H0 : |θ| ≤ δ vs not.

We can also consider nonparametric tests.

Example 1.2. Let X1, . . . , Xn
iid∼ P and Y1, . . . , Tm

iid∼. We can consider the hypothesis
test

H0 : P = Q, H1 : P 6= Q.

1We might slip up and say “accept” the null, but really what we are doing is failing to reject the null.
Don’t say “accept” around non-statisticians.
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1.2 The power function of a hypothesis test

How can we tell how good our hypothesis test is? We can formally describe a test by its
critical function.

Definition 1.1. The critical function (or test function) of a hypothesis test is

φ(x) =


0 fail to reject H0

π ∈ (0, 1) reject with probability π

1 reject H0

The power function tells us how good the test is.

Definition 1.2. The power function of a hypothesis test is

βφ(θ) = Eθ[φ(x)] = Pθ(Reject H0).

Definition 1.3. For nonrandomized φ, the rejection region is

R = {x : φ(x) = 1},

and the acceptance region is
A = X \R.

So the power function is Pθ(X ∈ R). We want the power to be large on the alternative
hypothesis and small on the null hypothesis. Usually, people refer to the power under the
alternative hypothesis, so you want more power for your test.

Definition 1.4. The significance level of φ is

sup
θ∈Θ0

βφ(θ).

We’ll say φ is a level-α test if its significance level is ≤ α.

The ubiquitous choice is α = 0.05.2

Example 1.3. Let X ∼ N(θ, 1), where we are testing H0 : θ = 0 vs H1 : θ 6= 0. Let
zn = Φ−1(1− α), where Φ denotes the normal CDF. The usual 2-sided test is

φ2(X) = 1{|X|>zα/2}.

We could also do a 1-sided test
φ1(X) = 1{X>zα}.

2This is probably ubiquitous because when Fisher came up with the idea of hypothesis testing, he said
that he sometimes likes to use the value 0.05. This is probably this most influential offhand remark in the
history of science.
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Both of these are valid hypothesis tests at level α; the 1-sided test has lower power for
θ < 0. We could also try any number of hypothesis tests, such as

φ3(X) = 1{x<−zα/3 or X>z2α/3}.

We can plot the power of these tests against θ:

Can we tell which hypothesis test is the best? In some situations, there is a best test.

Example 1.4. Let X ∼ (0, 1) with H0 : θ ≤ 0 vs H1 : θ > 0. Then the test φ1 is the best
possible test (called uniformly most powerful). We will discuss this in detail next time.

So 1-sided tests have a best test. We’ll start simple and work our way up to more
complicated tests.

Definition 1.5. A simple hypothesis is a singleton. A composite hypothesis is one
that isn’t simple.

1.3 Likelihood ratio tests and the Neyman-Pearson lemma

Suppose we test H0 : θ = θ0 vs H1 : θ = θ1. Without loss og generality, we may assume
θ0 = 0 and θ1 = 1. Without loss of generality, assume P0 and P1 have densities p0, p0 (which
we may do because P0 and P1 are both absolutely continuous with respect to P0 + P1).

The optimal test rejects for large values of p1(x)
p0(x) .

Definition 1.6. The likelihood ratio test (LRT) is of the form

φ∗(x) =


1 p(x)

p0(x) > c

γ p1(x)
p0(x) = c

0 p1(x)
p0(x) < c,

where c, γ are chosen so P0(Reject) = α.

3



We will prove that this is the best test, but first, here is some intuition. The power
under the alternative hypothesis H1 is∫

R
p1(x) dµ(x),

and the significance level is ∫
R
p0(x) dµ(x).

We want to maximize the first integral subject to constraint that the second integral equals
α. Think of the first integral as the bang, and the second integral as the buck; you want to
get the most bang for your buck. If you think about wanting to buy flour from the grocery
store with a fixed budget, you’ll try to buy bags of flour with the lowest cost per unit until
you run out of money. Here, the cost per unit is p1(x)

p0(x) , and the γ corresponds to the little
bit of change you have left over, which you use to buy a fractional bag of flour.

To carry out the proof that the likelihood ratio test is the best test, we would like to
use Lagrange multipliers. Since this is over infinitely many parameters, here is a lemma
which lets us carry out this optimization.

Proposition 1.1 (12.1 in Keener). Suppose c ≥ 0 and φ∗ maximizes

E1[φ(X)]− cE0[φ(X)]

among all critical functions. If E0[φ(X)] = α, then φ∗ maximizes E1[φ(X)] among all
level-α tests φ.

Proof. Suppose E0[φ(X)] ≤ α. Then

E1[φ(X)] ≤ E1[φ(X)] + c(α− E0[φ(X)])

≤ E1[φ∗(X)]− cE0[φ∗(X)] + cα

= E1[φ∗(X)].

Theorem 1.1 (Neyman-Pearson3). The likelihood ratio test wit h signigicance level = α
is optimal for testing H0 : X ∼ P0 vs H1 : X ∼ P1 (maximizes E1[φ(X)] such that
E0[Φ(X)] ≤ α).

Proof. We want to maximize the Lagrangian

L(φ; c) := E1[φ(X)]− cE0[φ(X)]

=

∫
X

(p1(x)− cp0(x))φ(x) dµ(x)

3This important theorem is often referred to as a lemma.
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=

∫
{p1>cp0}

|p1 − cp0|φdµ−
∫
p1<cp0

|p1 − cp0|φdµ.

To maximize L(φ; c), set

φ(x) =

{
1 if p1(x)

p0(x) > c

0 if p1(x)
p0(x) < c.

Choose the minimum value of c such that

P0

(
p1

p0
(X) > c

)
≤ α ≤ P0

(
p1

p0
(X) ≥ x

)
,

and choose γ to “top up” the significance level to α:

P0

(
p1

p0
(X) > c

)
+ γP0

(
p1

p0
(X) = c

)
= α.

Here’s a picture of how we can pick cα and γα for φ∗:

Corollary 1.1 (12.4 in Keener). If p0�
�a.s.= p1 and φ is the LRT with level α ∈ (0, 1), then

E1[φ(X)] > α.

Proof. We have µ({p1 > p0}), µ({p0 > p1}) > 0. We split into a few cases:
c ≥ 1: We split

E1[φ]− E0[φ] =

∫
{p1/p0>1}

|p1 − p0|φdµ−
∫
{p1/p0<1}

|p1 − p0|φdµ

> 0.

c < 1: This case is similar.
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Example 1.5. Suppose we have a 1-parameter exponential famil X ∼ pη(x) = eηT (x)−A(η).
Test the null hypothesis H0 : η = η0 vs the alternative H1 : η = η1 > η0. The likelihood
ratio is

p1(x)

p0(x)
=
eη1T (x)−A(η)

eη0T (x)−A(η)

= e(η1−η0)T (x)−(A(η1)−A(η0))

So the LRT should be to reject when this is large. Since this is a monotone function in
T (x), this is the same as saying we reject when T (x) is large. So we can say the test is

φ∗(x) =


1 T (x) > c

γ T (x) = c

0 T (x) < c,

where we choose c, γ to make

Pη0(T (X) > c) + γPγ0(T (X) = c) = α.

Notice that η1 is nowhere to be found. So this exact test is the best against any alternative
η1, as long as η1 > η0. So the best test only depends on the direction of the alternative.

Next time, we will discuss more situations like this, where we have best tests against
any alternative in a range of alternatives.
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